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All species have an environmental niche, and despite technological
advances, humans are unlikely to be an exception. Here, we
demonstrate that for millennia, human populations have resided
in the same narrow part of the climatic envelope available on the
globe, characterized by a major mode around ∼11 °C to 15 °C
mean annual temperature (MAT). Supporting the fundamental na-
ture of this temperature niche, current production of crops and
livestock is largely limited to the same conditions, and the same
optimum has been found for agricultural and nonagricultural eco-
nomic output of countries through analyses of year-to-year varia-
tion. We show that in a business-as-usual climate change scenario,
the geographical position of this temperature niche is projected to
shift more over the coming 50 y than it has moved since 6000 BP.
Populations will not simply track the shifting climate, as adapta-
tion in situ may address some of the challenges, and many other
factors affect decisions to migrate. Nevertheless, in the absence of
migration, one third of the global population is projected to expe-
rience a MAT >29 °C currently found in only 0.8% of the Earth’s
land surface, mostly concentrated in the Sahara. As the potentially
most affected regions are among the poorest in the world, where
adaptive capacity is low, enhancing human development in those
areas should be a priority alongside climate mitigation.
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Global warming will affect ecosystems as well as human
health, livelihoods, food security, water supply, and eco-

nomic growth in many ways (1, 2). The impacts are projected to
increase steeply with the degree of warming. For instance,
warming to 2 °C, compared with 1.5 °C, is estimated to increase
the number of people exposed to climate-related risks and
poverty by up to several hundred million by 2050. It remains
difficult, however, to foresee the human impacts of the complex
interplay of mechanisms driven by warming (1, 3). Much of the
impact on human well-being will depend on societal responses.
There are often options for local adaptations that could ame-
liorate effects, given enough resources (4). At the same time,
while some regions may face declining conditions for human
thriving, conditions in other places will improve. Therefore, de-
spite the formidable psychological, social, and political barriers
to migration, a change in the geographical distribution of human
populations and agricultural production is another likely part of
the spontaneous or managed adaptive response of humanity to a
changing climate (5). Clearly there is a need to understand the
climatic conditions needed for human thriving. Despite a long
and turbulent history of studies on the role of climate, and en-
vironment at large, on society in geography and beyond (6),
causal links have remained difficult to establish, and de-
terministic claims largely refuted, given the complexities of the
relationships in question (7). Rather than reentering the murky
waters of environmental determinism (8, 9), here we take a fresh
look at this complex and contentious issue. We mine the massive
sets of demographic, land use, and climate information that have
become available in recent years to ask what the climatic con-
ditions for human life have been across the past millennia, and

then examine where those conditions are projected to occur in
the future.

Results
Current and Past Human Association to Climate. Our results reveal
that today, humans, as well as the production of crops and
livestock (Fig. 1 A, D, and E), are concentrated in a strikingly
narrow part of the total available climate space (Fig. 1G). This is
especially true with respect to the mean annual temperature
(MAT), where the main mode occurs around ∼11 °C to 15 °C (SI
Appendix, Fig. S1). By contrast, much of range of precipitation
available around that temperature (Fig. 1G and SI Appendix, Fig.
S1) is used, except for the driest end. Soil fertility does not seem
to be a major driver of human distribution (Fig. 1H), nor can
potential productivity be a dominant factor, as net primary
productivity shows a quite different geographical distribution
(Fig. 1I), peaking in tropical rainforests, which have not been the
main foci of human settlement.
Strikingly, the apparent conditions for human thriving have

remained mostly the same from the mid-Holocene until now
(Fig. 1 A–C). Reconstructions of human distribution and climate
are relatively reliable for the past centuries, but uncertainty in-
evitably increases as we go further back in time. Nonetheless, the
two independent sets of available reconstructions we analyzed
suggest that as far back as 6000 y BP, humans were concentrated
in roughly the same subset of the globally available temperature
conditions (Fig. 1C and 2A), despite people at the time living
quite differently from today, mostly in the early phases of
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We show that for thousands of years, humans have concen-
trated in a surprisingly narrow subset of Earth’s available cli-
mates, characterized by mean annual temperatures around
∼13 °C. This distribution likely reflects a human temperature
niche related to fundamental constraints. We demonstrate that
depending on scenarios of population growth and warming,
over the coming 50 y, 1 to 3 billion people are projected to be
left outside the climate conditions that have served humanity
well over the past 6,000 y. Absent climate mitigation or mi-
gration, a substantial part of humanity will be exposed to
mean annual temperatures warmer than nearly anywhere
today.
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agriculture or as hunter-gatherers. Historical contingency (in-
cluding path dependence) may play some role in the inertia we
observe, especially when it comes to the sites of economic
dominance. However, such economic hotspots occur at some-
what colder conditions than the center of the population distri-
butions (Fig. 1F vs. Fig. 1A), and explaining such patterns of
economic dominance requires unraveling the dynamics of his-
torical, cultural, and institutional settings (10–14), which is be-
yond the scope of this paper.

If we focus at the global distribution of population densities
and examine how this codeveloped with climate over time, the
precipitation niche turns out to have broadened over the past
centuries (Fig. 1A vs. Fig. 1B), leaving only the driest part of the
gradient unoccupied (Fig. 1A vs. Fig. 1G). In contrast, the hu-
man population distribution in relation to MAT has remained
largely unaltered (Fig. 2A), with a major mode around ∼11 °C to
15 °C accompanied by a smaller secondary mode around ∼20 °C
to 25 °C corresponding largely to the Indian Monsoon region (SI

Fig. 1. The realized human climate niche relative to available combinations of MAT and precipitation. Human populations have historically remained
concentrated in a narrow subset (A–C) of the available climatic range (G), which is not explained by soil fertility (H) or potential primary productivity (I).
Current production of crops (D) and livestock (E) are largely congruent with the human distribution, whereas gross domestic product peaks at somewhat
lower temperatures. Reconstructions of human populations 500 BP are based on the HYDE database, whereas those for 6 Ky BP are based on ArchaeoGlobe
(https://doi.org/10.7910/DVN/CQWUBI, Harvard Dataverse, V4). NPP, net primary productivity. See SI Appendix, Methods.

Fig. 2. Change in MAT experienced by humans. (A) Current and past human population densities (normalized to sum unity) and modeled human niche (blue
dashed curve, a double Gaussian model fitting of current population density) as a function of MAT (°C), contrasted to the projected situation in 2070 (red
curve). Bands represent fifth and 95th percentiles of the ensemble of climate and population reconstructions. For the future projection, we take projected
populations and climate RCP8.5 and SSP3. (B) Mean temperature experienced by a human being in different periods. Boxplots and data points (gray dots) are
shown for the ensemble of climate and population reconstructions. Reconstructions of human populations for 6 Ky BP are based on the HYDE (HY) and
ArchaeoGLOBE (AG) (with additional processing) databases.
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Appendix, Fig. S2). In the remainder, we focus on this realized tem-
perature niche. Results for the combined precipitation–temperature
niche are presented for comparison in the SI Appendix.

Projected Change. The historical inertia of the human distribution
with respect to temperature (Fig. 2) contrasts sharply to the shift
projected to be experienced by human populations in the next
half century, assuming business-as-usual scenarios for climate
(Representative Concentration Pathway 8.5 [RCP8.5]) and pop-
ulation growth (socioeconomic pathway 3 [SSP3]) in the absence
of significant migration (Fig. 2A, red curve). Absent climate mit-
igation or human migration, the temperature experienced by an
average human is projected to change more in the coming decades
than it has over the past six millennia (Fig. 2B; for different sce-
narios of population growth and climate change, see SI Appendix,
Fig. S3). Compared with the preindustrial situation 300 y BP, the
mean human-experienced temperature rise by 2070 will amount to
an estimated 7.5 °C, about 2.3 times the mean global temperature
rise, a discrepancy that is largely due to the fact that the land will
warm much faster than the oceans (2), but also amplified some-
what by the fact that population growth is projected to be pre-
dominantly in hotter places (SI Appendix, Fig. S3).
One way to get an image of the temperatures projected to be

experienced in highly populated areas in 2070 is to look at the
regions where comparable conditions are already present in the
current climate. Most of the areas that are now close to the
historically prevalent ∼13 °C mode will, in 50 y have a MAT
∼20 °C, currently found in regions such as North Africa, parts of
Southern China, and Mediterranean regions (SI Appendix, Fig.
S4). Meanwhile, populations in regions that are currently hot
already will grow to represent a major part of the global pop-
ulation (right-hand mode of the red curve in Fig. 2A; the role of
population growth can be seen in SI Appendix, Figs. S5–S7).
Those growing populations will experience MATs currently
found in very few places. Specifically, 3.5 billion people will be
exposed to MAT ≥29.0 °C, a situation found in the present cli-
mate only in 0.8% of the global land surface, mostly concen-
trated in the Sahara, but in 2070 projected to cover 19% of the
global land (Fig. 3).
Another way to quantify change is through following the

movement of the geographical location of the human tempera-
ture niche (Fig. 4 and SI Appendix, Figs. S8 and S9). For the
RCP8.5 climate change scenario (2), the projected geographical
shift of favorable conditions over the coming 50 y is substantial
(Fig. 4). Indeed, the movement of the niche on the global map is
larger than it has been since 6000 BP (SI Appendix, Figs. S8 and

S9). These results are robust for different reconstructions of past
climate, different approaches to projection of future climate (SI
Appendix, Fig. S9), and different versions of the ArchaeoGlobe
land use reconstructions. Adding precipitation as an additional
climate dimension refines the pattern, mostly by excluding de-
serts, but leaves the overall picture the same (SI Appendix, Fig.
S10). The bottom line is that over the coming decades, the hu-
man climate niche is projected to move to higher latitudes in
unprecedented ways (SI Appendix, Fig. S11). At the same time,
populations are projected to expand predominantly at lower
latitudes (SI Appendix, Fig. S5), amplifying the mismatch be-
tween the expected distribution of humans and the climate.

A Hypothetical Redistribution. As conditions will deteriorate in
some regions, but improve in other parts (Fig. 4C and SI Ap-
pendix, Figs. S9 and S10), a logical way of characterizing the
potential tension arising from projected climate change is to
compute how the future population would in theory have to be
redistributed geographically if we are to keep the same distri-
bution relative to temperature (methods and detailed results in
the SI Appendix, Material). Such a calculation suggests that for
the RCP8.5 business-as-usual climate scenario, and accounting
for expected demographic developments (the SSP3 scenario
[15]), ∼3.5 billion people (roughly 30% of the projected global
population; SI Appendix, Fig. S12) would have to move to other
areas if the global population were to stay distributed relative to
temperature the same way it has been for the past millennia (SI
Appendix, Fig. S13). Strong climate mitigation following the
RCP2.6 scenario would substantially reduce the geographical
shift in the niche of humans and would reduce the theoretically
needed movement to ∼1.5 billion people (∼13% of the projected
global population; SI Appendix, Figs. S12 and S13). Obviously,
different scenarios of population growth also have substantial
effects on the absolute estimates of potential migration (SI Ap-
pendix, Table S3). Such niche movement estimates allow quan-
tifying the implications of global warming in nonmonetary terms.
For instance, accounting for population growth projected in the
SSP3 scenario, each degree of temperature rise above the cur-
rent baseline roughly corresponds to one billion humans left
outside the temperature niche, absent migration (SI Appendix,
Fig. S14).

Discussion
The transparency of our approach is appealing, but inevitably
implies some loss of nuance. For instance, temperature captures
only part of the relevant climate (16), and potentially important

Fig. 3. Expansion of extremely hot regions in a business-as-usual climate scenario. In the current climate, MATs >29 °C are restricted to the small dark areas in
the Sahara region. In 2070, such conditions are projected to occur throughout the shaded area following the RCP8.5 scenario. Absent migration, that area
would be home to 3.5 billion people in 2070 following the SSP3 scenario of demographic development. Background colors represent the current MATs.
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drivers of human thriving are linked in complex ways to climate
(13). Importantly, while our projection of the geographical shift
of the temperature niche is illustrative, it cannot be interpreted
as a prediction of migration, as many factors other than climate
affect decisions to migrate, and much of the migration demand
may potentially be addressed through climate adaptation (5, 17,
18). Those complexities invite reflections on two key questions:
First, how could the narrow realized temperature niche be explained?
Second, what are the implications in terms of potential future
migration in response to geographical displacement of the
temperature niche?

The Question of Causality. Why have humans remained concen-
trated so consistently in the same small part of the potential cli-
mate space? The full complex of mechanisms responsible for the
patterns is obviously hard to unravel. The constancy of the core
distribution of humans over millennia in the face of accumulating
innovations is suggestive of a fundamental link to temperature.
However, one could argue that the realized niche may merely
reflect the ancient needs of agrarian production. Perhaps, people

stayed and populations kept expanding in those places, even if the
corresponding climate conditions had become irrelevant? Three
lines of evidence suggest that this is unlikely, and that instead
human thriving remains largely constrained to the observed re-
alized temperature niche for causal reasons.
First, an estimated 50% of the global population depends on

smallholder farming (19), and much of the energy input in such
systems comes from physical work carried out by farmers, which
can be strongly affected by extreme temperatures (20). Second,
high temperatures have strong impacts (21–23), affecting not
only physical labor capacity but also mood, behavior, and mental
health through heat exhaustion and effects on cognitive and
psychological performance (20, 24, 25). The third, and perhaps
most striking, indication for causality behind the temperature
optimum we find is that it coincides with the optimum for eco-
nomic productivity found in a study of climate-related dynamics
in 166 countries (12). To eliminate confounding effects of his-
torical, cultural, and political differences, that study focused on
the relation within countries between year-to-year differences in
economic productivity and temperature anomalies. The ∼13 °C

Fig. 4. Projected geographical shift of the human temperature niche. (Top) Geographical position of the human temperature niche projected on the current
situation (A) and the RCP8.5 projected 2070 climate (B). Those maps represent relative human distributions (summed to unity) for the imaginary situation that
humans would be distributed over temperatures following the stylized double Gaussian model fitted to the modern data (the blue dashed curve in Fig. 2A).
(C) Difference between the maps, visualizing potential source (orange) and sink (green) areas for the coming decades if humans were to be relocated in a way
that would maintain this historically stable distribution with respect to temperature. The dashed line in A and B indicates the 5% percentile of the probability
distribution. For an analysis including precipitation effects, see SI Appendix, Fig. S10.
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optimum in MAT they find holds globally across agricultural and
nonagricultural activity in rich and poor countries. Thus, based
on an entirely different set of data, that economic study in-
dependently points to the same temperature optimum we infer.
Altogether, it seems plausible that the historically stable as-

sociation between human distribution and temperature reflects a
causal link rather than a legacy, contingent on ancient patterns
reflecting agrarian needs or still-more-ancient hunter-gatherer
preferences. This supports the view that the historically stable
and tight relationship of human distribution to MAT represents
a human temperature niche reflecting fundamental constraints
on human populations.

Migration as a Possible Response to Climate Change. Obviously, our
hypothetical redistribution calculations cannot be interpreted in
terms of expected migration. First of all, detailed regional studies
suggest that migration responds nonlinearly to temperature (18,
26, 27). Thus, migration may speed up only when a critical cli-
mate threshold is reached. More generally, migration decisions
tend to be avoided and depend on a complex array of factors
including adaptation options (5, 17, 18). This implies that re-
alized migration numbers will likely be much lower than sug-
gested by the discrepancy between the expected location of the
temperature niche and actual distributions of population, even
though we have not considered several drivers that could exac-
erbate movements, such as extreme weather events or projected
sea-level rise, which may by themselves lead to substantial pop-
ulation displacements worldwide (28, 29).
Clearly, projections of the magnitude of climate-driven future

migration (including asylum seeking) will remain highly un-
certain. Even seemingly straightforward links between climate
and recent conflicts and migration waves are contentious. For
instance, in the years leading up to the current Syrian exodus, the
fertile crescent has likely been experiencing the worst drought in
900 y, making subsistence farming in the countryside extremely
hard and driving millions in Syria to the cities, where tensions
increased (30). However, as many factors play a role, assessing
the relative role of climate in such specific conflict or mass
migration events always remains challenging (31, 32). This is
not to say that there is no evidence for a causal relationship
between conflicts and climate events such as prolonged
droughts, both now (33) and in the past (34). In fact, the lit-
erature is replete with evidence for ancient episodes of
climate-triggered human migration and upheaval (e.g., refs.
34–40). For instance, the coldest phase of the Little Ice Age in
Europe (1560 to 1660 AD) has been causally linked to a peak
of migration (1580 to 1650 AD) and a European population
collapse to a minimum in 1650 AD (41). Earlier, the Late
Antique Little Ice Age from 536 to about 660 AD affected
most of the Northern Hemisphere, likely contributing to the
transformation of the Roman Empire, movements out of the
Asian steppe and Arabian Peninsula, spread of Slavic-speaking
peoples, and upheavals in China (40). Clearly, lessons from
such ancient dynamics cannot be directly extrapolated to
modern times. However, while outcomes are context de-
pendent, and confounding social, cultural, and political con-
siderations are always present, a range of analyses suggests
that changes of climatic conditions can exert enough stress to
trigger migration (5, 17, 18, 42), part of which can take the
form of asylum-seeking waves in response to climate-driven
conflicts (43).
It thus seems reasonable to assume that at least part of the

discrepancy caused by the projected geographical shift in the
human temperature niche could be reduced through different
forms of migration. However, it remains impossible at this point
to foresee the extent of climate-driven redistribution of the hu-
man population. Technoeconomic scenarios, political develop-
ments, institutional changes, and socioeconomic conditions that

affect adaptation options may profoundly affect outcomes in
ways that will be worth exploring in further scenario analyses
utilizing the different assumptions underlying the SSPs. Also,
rising mortality impacts of heat waves on dense populations in
already-hot places such as India invite further scrutiny (44).
Follow-up work is needed to search for integrative avenues for
effective adaptation, as well as defining fundamental limitations
to what is possible given available resources.

Outlook. In summary, our results suggest a strong tension be-
tween expected future population distributions and the future
locations of climate conditions that have served humanity well
over the past millennia. So far, the scope for local adaptation has
been the dominant focus for analyses of possible responses to a
changing climate (4), despite a striking lack of realized adapta-
tion in most regions (12, 13). It is not too late to mitigate climate
change and to improve adaptive capacity, especially when it
comes to boosting human development in the Global South (45,
46). However, our approach naturally raises the question of what
role redistribution of populations may come to play. Migration
can have beneficial effects to societies, including a boost to re-
search and innovation (47). However, on larger scales, migration
inevitably causes tension, even now, when a relatively modest
number of ∼250 million people live outside their countries of
birth (48). Looking at the benefits of climate mitigation in terms
of avoided potential displacements may be a useful complement
to estimates in terms of economic gains and losses.

Methods
We characterized the human climate niche using global gridded datasets for
human population as well as a range of social and environmental variables.
We used the current population data as well as reconstructed population
data available from the History Database of the Global Environment (HYDE
3.1) (49). For early periods, these population data are hindcast from multiple
sources. For mid-Holocene, we therefore complement the HYDE data with a
reconstruction described in the SI Appendix and based on direct estimates
from archaeology (50). Details on the sources and preprocessing of data on
crop production, livestock distribution, gross domestic product, and past and
present MAT and mean annual precipitation (MAP) are also presented in the
SI Appendix. We plotted heat maps illustrating the past and current human
climate niche by calculating the mean population density and other vari-
ables within each MAT and MAP combination bin and smoothing the result,
excluding bins with sparse data points. We also present running means of
relevant variables separately against MAT and MAP in the SI Appendix.
Uncertainties were characterized as the fifth and 95th percentiles, using
different population and climate datasets (SI Appendix).

We modeled the realized human temperature niche based on double-
Gaussian fitting of the running mean of the current population distribu-
tion against MAT (Fig. 2A, blue dashed curve). We then projected the
modeled niche to the past (6 Ky BP) and future (2070) climate conditions
(under different Intergovernmental Panel on Climate Change RCPs) to il-
lustrate the potential geographic shift of human temperature niche under
near-future global warming. To test for the robustness against adding
precipitation as an additional dimension of human climate niche, we also
projected the smoothed human distribution in terms of MAT and MAP to
the past and future climates for comparison.

To quantify the projected shift of the human temperature niche, we
calculated proportions of summed niche gain or loss. By multiplying the
projected world’s total population (under different IPCC SSPs) by the pro-
portion of displaced niche, we estimated the numbers that would poten-
tially be displaced if the probability distribution over temperatures were to
remain unchanged by 2070.

A detailed description of ourmaterials andmethodsmay be found in the SI
Appendix, where the reader may also find a broad set of additional results
and sensitivity analyses, as well as a Dryad link to the data used and scripts
for all computations.
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